

Fig. 9. Possible alternative CaCO_{3} stability diagrams. Figure 9A shows possible relations if a hypothetical phase " X " makes a metastable triple point with aragonite and calcite II in the field of aragonite. Metastable portions are indicated by dotted and broken lines. Figure 9B shows possible relations if a hypothetical phase " X " has a stable invariant relation with respect to calcite I and calcite II.
does, and the $\Delta_{\mathrm{I}-\mathrm{II}}$ must be the sum of $\Delta \mathrm{V}_{\mathrm{I}-\mathrm{X}}$ and! $\Delta \mathrm{V}_{\mathrm{X}-\mathrm{II}}$. This hypothesis would also eliminate the need for curvature in the calcite I-II curve. A deflection of the calcite-aragonite curve by the II-X transition as it crosses it might be too small to be easily observed.

Figure 9B is a diagram that would result if there is a "II-X" transition that makes a stable invariant point with the I-II transition. The observations of Bell and England could be explained by this hypothesis, but the observation of Dandekar could not. Again the I-II transition would have to have a large ΔV and need not have much curvature.

It is conceivable that both calcite II and a "calcite X " might have a calcite I-like X-ray diffraction powder pattern with the (113) line missing, whether or not an anion-rotation phenomenon is responsible for the line deletion. Thus a diagram involving three calcite phases is not eliminated as a possibility by the present data. The scientists' prejudice for the simplest workable hypothesis may lend favor to the relatively straightforward calcite I-II interpretation as shown in figure 1.

Binary system.-Many of the features of the pressure-temperature diagram of the system $\mathrm{CaCO}_{3}-\mathrm{MgCO}_{3}$ can be investigated by using the theory of regular solutions. Following Robie (1957), CaCO_{3} (cc) $-\mathrm{MgCO}_{3}$ (mc) solutions in the calcite structure are treated as regular solutions, so that:

$$
\begin{aligned}
\mu_{\mathrm{cc}} & =\mu_{\mathrm{cc}}^{\circ}+\mathrm{RT} \ln \left(1-\mathrm{X}_{\mathrm{mc}}\right)+\Omega \mathrm{X}_{\mathrm{mc}} \\
\mu_{\mathrm{mc}} & =\mu_{\mathrm{mc}}^{\circ}+\mathrm{RT} \ln \mathrm{X}_{\mathrm{mc}}+\Omega\left(1-\mathrm{X}_{\mathrm{mc}}\right)^{2}
\end{aligned}
$$

where μ denotes the partial molal Gibbs energy of the components, R is the gas constant per mole, T is the absolute temperature, X is the mole fraction of a component, Ω is the "inter-change energy" per mole (Guggenheim, 1952), and a superscript zero refers to the pure component.

The equilibrium relation of the solvus is given by:

$$
\mu_{\mathrm{cc}}^{\mathrm{c}}+\mu_{\mathrm{mc}}^{\mathrm{c}}-\mu^{\mathrm{D}}=0
$$

Here the superscript C represents calcite, and D represents dolomite. Inserting the regular solution equations gives:

$$
0=\Delta \mu^{\circ}+\mathrm{RT} \ln \mathrm{X}_{\mathrm{mc}}\left(1-\mathrm{X}_{\mathrm{mc}}\right)+\Omega\left[\mathrm{X}_{\mathrm{mc}}^{2}+\left(1-\mathrm{X}_{\mathrm{mc}}\right)^{2}\right]
$$

The standard Gibbs energy change for the pure substances, $\Delta \mu^{\circ}$, is evaluated by:

$$
\Delta \mu^{\circ}=\Delta \mathbf{H}^{\circ}{ }_{298}-\mathbf{T} \Delta S^{\circ}{ }_{298}
$$

where $\Delta \mathrm{H}^{\circ}{ }_{298}$ is the standard enthalpy change, and $\Delta \mathrm{S}^{\circ}{ }_{298}$ is the corresponding entropy increment. The latter equation assumes that $\Delta \mathrm{S}^{\circ}$ is constant over the temperature interval $298^{\circ} \mathrm{K}-\mathrm{T}$, an assumption that is necessary because of the lack of high-temperature heat content data for magnesite and dolomite. This assumption is likely to be valid with a high degree of accuracy in the temperature range of interest, as evidenced by the fact that the heat capacity of dolomite in the range 70 to $300^{\circ} \mathrm{K}$ is equal to the sum of the heat capacities of calcite and magnesite to within 0.2 percent (Robie, ms, p. 73). Hence,

$$
\Omega=\frac{-\Delta \mathrm{H}^{\circ}{ }_{298}+\mathrm{T} \Delta \mathrm{~S}_{298}^{\circ}-\mathrm{RT} \ln \mathrm{X}_{\mathrm{mc}}\left(\mathrm{I}-\mathrm{X}_{\mathrm{mc}}\right)}{2 \mathrm{X}_{\mathrm{mc}}^{2}-2 \mathrm{X}_{\mathrm{mc}}+1}
$$

The values of $\Delta \mathrm{H}^{\circ}{ }_{298}=3150 \mathrm{cal} / \mathrm{mole}$ and $\Delta \mathrm{S}^{\circ}{ }_{298}=0.81 \mathrm{cal} /{ }^{\circ} \mathrm{C}$-mole used by Robie are adopted. Table 4 shows the values of Ω that are calculated at several temperatures when the best solvus data of the present work, reduced to a $1-\mathrm{atm}$ basis by applying the measured pressure correction, are used. The Ω values fall within a fairly narrow spread, which is some justification for the use of the regular solution theory.

The effect of total pressure on the MgCO_{3} solubility can be calculated as follows. The total variation at constant temperature of the Gibbs energy change of the solvus reaction, $\Delta \mu=\mu_{c c}{ }^{c}+\mu_{\mathrm{mc}}{ }^{\mathrm{c}}-\mu^{\mathrm{D}}$,

